Refine Your Search

Topic

Search Results

Technical Paper

Coupled Game Theory-Based Kinematics Decision Making for Automatic Lane Change

2022-03-31
2022-01-7015
With the development of science and technology, breakthroughs have been made in the fields of intelligent algorithms, environmental perception, chip embedding, scene analysis, and multi-information fusion, which has prompted the wide attention of society, manufacturers and owners of autonomous vehicles. As one of the key issues in the research of autonomous vehicles, the research of vehicle lane change algorithm is of great significance to the safety of vehicle driving. This paper focuses on the conflict of interest between the lane-changing vehicle and the target lane vehicle in the fully autonomous driving environment, and proposes the method of coupling kinematics and game theory, so that when the vehicle is in the process of lane changing game, the lane-changing vehicle and the target lane vehicle can make decisions that are beneficial to the balance of interests of both sides.
Journal Article

A Comprehensive Validation Method with Surface-Surface Comparison for Vehicle Safety Applications

2017-03-28
2017-01-0221
Computer Aided Engineering (CAE) models have proven themselves to be efficient surrogates of real-world systems in automotive industries and academia. To successfully integrate the CAE models into analysis process, model validation is necessarily required to assess the models’ predictive capabilities regarding their intended usage. In the context of model validation, quantitative comparison which considers specific measurements in real-world systems and corresponding simulations serves as a principal step in the assessment process. For applications such as side impact analysis, surface deformation is frequently regarded as a critical factor to be measured for the validation of CAE models. However, recent approaches for such application are commonly based on graphical comparison, while researches on the quantitative metric for surface-surface comparison are rarely found.
Journal Article

A Corrected Surrogate Model Based Multidisciplinary Design Optimization Method under Uncertainty

2017-03-28
2017-01-0256
Vehicle weight reduction has become one of the most crucial problems in the automotive industry because that increasingly stringent regulatory requirements, such as fuel economy and environmental protection, must be met. The lightweight design needs to consider various vehicle attributes, including crashworthiness and stiffness. Therefore, in essence, the vehicle weight reduction is a typical Multidisciplinary Design Optimization problem. To improve the computational efficiency, meta-models have been widely used as the surrogate of FE model in the multidisciplinary optimization of large structures. However, these surrogate models introduce additional sources of uncertainties, such as model uncertainty, which may lead to the poor accuracy in prediction. In this paper, a method of corrected surrogate model based multidisciplinary design optimization under uncertainty is proposed to incorporate the uncertainties introduced by both meta-models and design variables.
Journal Article

An Integrated Validation Method for Nonlinear Multiple Curve Comparisons

2016-04-05
2016-01-0288
In automobile industry, computational models built to predict the performances of the prototype vehicles are on the rise. To assess the validity or predictive capability of the model for its intended usage, validation activities are conducted to compare computational model outputs with test measurements. Validation becomes difficult when dealing with dynamic systems which often involve multiple functional responses, and the complex characteristics need to be appropriately considered. Many promising data analysis tools and metrics were previously developed to handle data correlation and evaluate the errors in magnitude, phase shift, and shape. However, these methods show their limitations when dealing with nonlinear multivariate dynamic systems. In this paper, kernel function based projection is employed to transform the nonlinear data into linear space, followed by the regular principal component analysis (PCA) based data processing.
Technical Paper

Research on Vulnerable Road User Detection Algorithm based on Improved Deep Learning

2023-12-20
2023-01-7050
This paper proposes a detection algorithm based on deep learning for Vulnerable Road Users such as pedestrians and cyclists, which is improved on the basis of YOLOv5 network model. (1) Aiming at the problems of low resolution and insufficient information for small targets, a multi-scale feature fusion method is adopted to integrate shallow features with deep features.
Technical Paper

Signal Control of Urban Expressway Ramp Based on Reinforcement Learning

2024-04-09
2024-01-2875
With economic development and the increasing number of vehicles in cities, urban transport systems have become an important issue in urban development. Efficient traffic signal control is a key part of achieving intelligent transport. Reinforcement learning methods show great potential in solving complex traffic signal control problems with multidimensional states and actions. Most of the existing work has applied reinforcement learning algorithms to intelligently control traffic signals. In this paper, we investigate the agent-based reinforcement learning approach for the intelligent control of ramp entrances and exits of urban arterial roads, and propose the Proximal Policy Optimization (PPO) algorithm for traffic signal control. We compare the method controlled by the improved PPO algorithm with the no-control method.
Technical Paper

Simulation of Self-Piercing Riveting Process in Aluminum Alloy 5754 Using Smoothed Particle Galerkin Method

2024-04-09
2024-01-2069
Self-piercing riveting (SPR) are one of most important joining approaches in lightweight vehicle design for Body-in-white (BIW) manufacturing. Numerical simulation of the riveting process could significantly boost design efficiency by reducing trial-and-error experiments. The traditional Finite Element Method (FEM) with element erosion is hard to capture the large plastic deformation and complex failure behaviors in the SPR process. The smoothed Particle Galerkin Method (SPG) is a genuine meshless method based on Galerkin's weak form, which uses a novel bond-based failure mechanism to keep the conservation of mass and momentum during the material failure process. This study utilizes a combined FEM and SPG approach to join Aluminum sheet 5754 using a full three-dimensional (3D) model in LS-DYNA/explicit.
X